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Quantum resonance in an intrinsically degenerate system: Nonlinear cyclotron resonance
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The quantum dynamics of a charged particle gyrating in a uniform magnetic field and interacting with
a monochromatic wave is investigated here under the condition of cyclotron resonance. The classical
counterpart of this system is intrinsically degenerate. The structure of the Floquet spectrum and
quasienergy functions for the exact and near resonance cases is obtained and related to the classical
phase space structure. The evolution of various representative initial states is investigated and the close
connection between classical and quantum dynamics at nonlinear cyclotron resonance is demonstrated.
The condition for the experimental realization of the acoustic quantum nonlinear cyclotron resonance in
conductors is given, and the influence of sound waves on some oscillatory phenomena in quantizing mag-

netic fields is predicted.

PACS number(s): 05.45.+b, 03.65.Sq, 03.65.Bz

In recent years the phenomenon of nonlinear quantum
resonance in two-dimensional systems and one-
dimensional systems driven by a periodic external field
has been investigated in detail [1-5]. The properties of
their spectra and eigenfunctions were explored. Among
other things, it was shown that, analogous to the classical
case, quantum nonlinear resonances for a small perturba-
tion parameter remain isolated in Hilbert space. Howev-
er, as this parameter is increased resonances can overlap,
leading to an extension of the wave function. To our
knowledge, nonlinear quantum resonance has been stud-
ied only in systems whose classical counterpart is ac-
cidentally degenerate and the conditions of the Kolmo-
gorov, Arnold, Moser theorem are satisfied. In this work
we will treat the quantum resonance in a system whose
classical analog is intrinsically degenerate. An important
and simple physical model of such a system is a particle
moving in a constant magnetic field H perturbed by a
monochromatic wave spreading perpendicularly to the
vector H. In solid state physics this system can be real-
ized in metals, semiconductors, and low-dimensional
semiconductor structures.

Classical nonlinear cyclotron resonance has been stud-
ied extensively in plasma physics [6—8] and in solid state
physics [9]. Chernikov and collaborators [10] have
shown that for the exact resonance case, the dynamics of
a simple harmonic oscillator (SHO) perturbed by a wave
field is much richer than that of a nonlinear SHO that is
equally perturbed. This is so mainly because no KAM
tori exists to limit diffusion. The phase space portrait in
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action-angle variables of the perturbed SHO consists of a
separatrix lattice enclosing elliptic orbits and forming
rectangular cells. Two such cells are shown in Fig. 1(a).
This interesting feature of a classical intrinsically degen-
erate system makes its quantum counterpart a very at-
tractive subject for investigation. Some interesting quan-
tum aspects (e.g., the time of classical description and
diffusion) of the periodically kicked SHO have been in-
vestigated in [11].

We first give here a brief review of some essential as-
pects of the classical problem (for details, see Ref. [8]).
The Hamiltonian of the charged particle moving in both
magnetic and monochromatic wave fields has the form
2

e
—<A
P c

H= —Vycoslkx —wt) , (1)

2m
where the gauge A (0,Hx,0) was chosen to produce a
magnetic field along the z direction, m is the mass of the
particle, p is the momentum, k is the wave vector, o is
the wave frequency, and V|, is the amplitude of perturba-
tion.
The first order perturbation theory near a resonance
gives the following Hamiltonian [8]:

H=TI8w—J,(kr(I))cosO , (2)

where T and 8 are the resonant canonical conjugate
action-angle variables, dw=I/w, —w, I is the number of
resonance, [ =1,2, ..., o, =eH /mc is the cyclotron fre-
quency, and J;(kr) is the Bessel function of order /.
When 8w =0 the elliptic fixed points are determined by

dJ,(kr(D)) _
=" =0, §=0,7, 3)
dI

and the hyperbolic points by
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J(kr(I))=0, O=m/2, 6=37/2. (4)  becomes
The size of a lattice cell in action is limited by two neigh- i#C, = > [Vr(l,lrz +msin(ot)+ V,(,z,z +mcos(wt)]
boring roots of the Bessel function of order /; see Fig. m
1(a). It is important to note that the size of the cells is in- —imot
XC,ime 9)

dependent of the amplitude of perturbation V.

In this first order approximation, the system described
by (2) is integrable, unlike the exact system described by
the Hamiltonian (1). If nonresonant terms are taken into
account in (1), then the separatrices become a stochastic
web whose thickness decays exponentially with the dis-
tance from the initial cell [10]. Traveling along the web,
particles diffuse to greater energies.

The quantum version of our system is described by the
Hamiltonian

A=H,—Vcos(kx —wt) , (5)
where A o is the SHO Hamiltonian
a2 2 ~2
25 px mwt’ 2 p z
H,= + — +
0T g T Ty XX (6)

The momenta p, and p, are integrals of the motion, so

the last term in H, can be omitted. The center of the os-
cillations, x|, =cp, /eH, is constant and one can exclude it
in (6) by choosing the initial time ¢ =t¢, appropriately.
Henceforth we set t,=0 and our problem is then
equivalent to that of a one-dimensional quantum SHO
driven by a monochromatic wave.

It is convenient to choose SHO bases to expand the
state vector,

PY(x,t)= C,(t),(x)exp(—iE, t/#) , @)

where ¢, (x) is the nth eigenfunction of the SHO Hamil-
tonian I/-;O and E, =#iw.(n +1) is the energy on the nth
Landau level. Using (7), the nonstationary Schrodinger
equation

iﬁi"’gt‘—’”=ﬁ¢(x,t) ()
> ®
l ,
. e)\\®

i\ J

(_\«ﬁ

N v

—n/2 2 In2 -n2 =2 3n/2
] (-]

FIG. 1. Phase portrait in action-angle variables of the system
described by Hamiltonian (2). The horizontal parts of the
separatrix correspond to action values such that J,(kr(I))=0.
(a) The exact resonance case 8w=0. (b) The near resonance
case 8w70.

The matrix elements V,‘,},2+ m V,(,Z,Z +m ) describe the tran-
sitions between levels of opposite (equal) parity. They are
expressed via the Laguerre polynomials as [12]

( —1 )m#2me *,u2/4

V(l) :-——V
non+2m+1 02m+1\/(n+1)(n+2m+1)
2
X L2m ! Hz— , (10a)
2
(—1)m 2mg —pt/4 2

Vt(1,2r:+2m:_V0 m1 = 3”‘ £ ’

2" "W (n+1) - (n+2m) 2

(10b)

where u=ka, a =V'#ic /eH is the magnetic length, and
L™ are the Laguerre polynomials. When n >>1>>pu?/2,
the Laguerre polynomials can be expressed in terms of
the Bessel functions [12],

m

2n

u?

I

L2m
" 2

Tom(kr,) (11)

where r,=V2na. For calculation purposes we confine
ourselves to the case n >>1>>u?/2 and obtain the fol-
lowing expression for the matrix elements:

— 2
V“) VO (__l)mnm+1/2e u/4

mrE2m T 1) - (n t2m +1)
><J2m+1(kr,,) ) (12a)
V (—1)mpme ~H'/4
V2 om=——= Tom(kry) .
nn+2m 2 ‘/(n+1)(n+2m) 2m( ry
(12b)

All terms in the sum in (9) are of the same order in the
amplitude ¥V, but they differ in their frequency of oscilla-
tion. Keeping only the resonant terms in (9) we obtain

i#C, =V 1Cos1 H Vi 1Coy s (13)

where j=1 (2) for odd (even) resonance number /. In-
cidentally, if we were to consider effects such as second
order resonances, their overlapping, and their relation to
quantum chaos, we would have needed to include non-
resonant terms in (9).

Since the perturbation is periodic in time, Floquet
theory can be used to determine the time evolution of the
system in terms of quasienergy (QE) spectra E, and QE
functions W (x,¢). Then the QE eigenfunctions of the
evolution operator for one period of oscillation of the
external field, T =27 /w, can be written as

iE,t
#

v, (x,t)=exp U,(x,t), (14)
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where U,(x,t)=U,(x,t +T). As in Eq. (7) we expand
U,(x,t)ona SHO basis,

U,(x,0)="3 CHD),(x) . (15)

Coefficients CJ(t) are periodic functions of ¢ and can be
expanded in a Fourier series

Clt)=3 A] exp(—iswt) . (16)

After substituting Eqgs. (14), (15), and (16) into the
Schrodinger Eq. (8), we obtain the following system of
uniform algebraic equations:

(E,~#iw.n +hws) AL = VI (AL 1+ AL )
m

(17)

(see, for example, Ref. [13], formula 9.2.18, p. 386), where
the quasienergy E, is measured from the ground state
fiw. /2. We can solve Eq. (17) for two distinct cases;
namely, the resonant and near resonant cases. We calcu-
late E;, and 4] by perturbation theory assuming
V,/#fiw <<1. Furthermore, for the near resonant case
(0, —w=38w) we also assume that E_ is proportional to
V, and that fidwn <<fiw for all values of n considered
here. Under these conditions we have, to zeroth order
approximation,

(fiws —fio .n) 4] =0 .
Hence,
A =0 for n#s, A} =4 for n=s .

To first order approximation, Eq. (17) yields

(E,—#bwn)AI=V!) (Al +V)_ 45 . (18

In a similar manner one can deduce for any resonant
number [ its corresponding QE-eigenvalue equation. The
QE spectrum E, and its eigenvectors 4], where n is the
nth component of gth QE vector, can be obtained by nu-
merical diagonalization. Figures 2 and 3 illustrate the re-
sults of our calculation for the case of exact resonance.
The matrix elements V,(,’l,,’ﬂ, which are proportional to
the Bessel function [see (12)a], are shown on the top of
Fig. 2 as a function of n. The argument of the Bessel
function is kr,=V2nh, where h =k2a’>=kc#/eH.
Thus 4 is the effective Planck’s constant for our problem.
We see that the plot of these matrix elements as a func-
tion of n define “quantum resonance cells” in Hilbert
space delimited by the zeros of the Bessel function. That
is, if the initial state is located in a certain cell, then al-
most all subsequent dynamics described by Eq. (13) will
occur in this individual cell because the matrix elements
are small on the boundaries of the cell and hence the
transition probabilities here are small, too. This can be
shown also from Eq. (18), where the off-diagonal modula-
tion causes the system to break into a series of the weakly
interacting parts. Figure 2 shows three such cells and
four spectra. Note here that all E, are proportional to
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FIG. 2. Matrix elements and QE spectrum for the exact reso-
nance case. The energy scale is in arbitrary units, V,=2.0, and
the effective Planck constant h=1.
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FIG. 3. QE functions 4/ as a function of n for the exact res-
onance case. (a) g=4, (b) g=S5, (c) g=81, (d) g=39. q labels the
gth QE state in ascending order from the bottom of the spec-
trum. The values of ¥V, and 4 are the same as in Fig. 2.
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V, [cf. Egs. (18) and (12)]; therefore the results of our cal-
culations presented in Fig. 2 can be used to obtain QE
spectra for an arbitrary V,,. Each spectrum, (a)-(c), cor-
responds to the solution of Eq. (18) considering only
those unperturbed states that lie in their respective cells.
Spectrum (d) is calculated including the total number of
states in all three cells. An inspection of Fig. 2 shows
that the range of each individual spectrum is roughly
proportional to the maximum of the matrix element of its
corresponding cell, £V % ,|. We wish to remark that
these energy intervals correspond to the intervals where
the classical Hamiltonian (2) changes from — VJ,(kr) to
+ VJ,(kr) as cos varies from —1 to +1. Moreover, we
see from Fig. 1(a) that this energy interval encloses two
classical resonant cells. Thus, one Hilbert cell corre-
sponds to two classical cells. Note also that all spectra
are symmetrical and the number of QE states of each in-
dividual cell is equal to the number of unperturbed eigen-
states in its corresponding cell. These features are due to
the structure and size, respectively, of the determinant of
the system (18). Furthermore the spectrum is very nearly
equidistant near the top and bottom of the energy inter-
val corresponding to each individual cell. Analytically,
we can show this feature by expanding the matrix ele-
ments in the neighborhood of its maximum absolute
value, n =n,, and expressing A7 (as in [14] p. 259) in the
form

1 27
9= __—_ / —
Af e fo dda(@lexpli(n —ny)p] . (19)

This procedure yields two Schrodinger equations
differing only by the sign of their potential, which is that
of a SHO. They give the equidistant separation of QE
levels that we observe at the top and the bottom of the
spectrum [see Figs. 2(a)-2(c)]. The frequency @ of this
oscillator gives the following distance between QE levels:

— d? 2nyh 2
#id=V, |J,(V 2noh )M : (20)
d°n
This expression, derived solely within quantum mechan-
ics, becomes identical to the classical formula for the fre-
quency of oscillations near the elliptic points on Fig. 1
([8], formula 2.4.77).

We observe from Fig. 2 that QE levels accumulate
around E, =0 for each individual spectrum. Classically,
E, =0 corresponds to the Hamiltonian (2) being equal to
zero, i.e., to the separatrix lattice (see Fig. 1), where the
frequency of motion approaches zero. Therefore, the
clustering of levels near E, =0 is the quantum manifesta-
tion of the classical motion near the separatrix.

Hence, the main classical features of the systems de-
scribed by the Hamiltonian (2) are manifested in the QE
spectra of uncoupled cells. Inspection of several numeri-
cal results likes those of Fig. 2(d) have shown that the
spectra calculated for the three cells can be considered
essentially as a superposition of the three uncoupled cells,
except near the accumulation point. The range of the
combined spectrum is given by the range of the spectrum
of the first cell. Each additional cell modifies the com-
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bined spectrum only within the range of each subsequent
cell. Note that the range decreases monotonically (as
V'1/kr ) and that the number of Landau states in each
cell is finite. Based on these facts we conjecture (we have
no rigorous mathematical proof) that the spectrum de-
scribed by Eq. (18) is discrete.

We can gain an understanding about the structure of
combined spectra by analyzing the nature of the QE func-
tions AJ. Figure 3 shows plots of 47 as a function of the
Landau number n. At the top of Fig. 3 we also plotted
the matrix elements ¥, , ;. We note that there are states
that are localized in one cell and others that are spread
throughout the three cells. We shall refer to these latter
ones as “‘partially extended.” They are not expected to be
fully extended since, as argued above, the spectrum is
discrete. We remark that this localization or extension
refers not to position space but to Landau states n. These
are, in general, not equivalent. Our numerical experi-
ments have shown that in general the localized states cor-
respond to QE levels at the bottom and top of the com-
bined spectrum. However, states extend over the three
cells for QE levels near E,=0. When we consider QE
functions for uncoupled cells, we find that these are local-
ized in the middle of the cell for QE levels at the extremes
of its spectrum and extend over the whole cell for QE lev-
els in the neighborhood of the center of its spectrum,
E,=0. The QE functions plotted in Figs. 3(a)-3(c) are
states belonging to the upper [3(c)] and the lower
[3(a),3(b)] parts of the combined spectrum. Figure 3(d)
belongs to a state near E, =0. The condition for states to
extend throughout the number of cells under considera-
tion is the clustering of levels around E, =0. Clusterings
of levels not in the vicinity of E, =0 are accidental and
do not yield extended QE states, because there is no over-
lapping at the boundaries of the cells and hence there is
no significant coupling.

We now analyze the structure of the QE spectrum and
QE functions for the near resonant case [see the corre-
sponding classical picture, Fig. 1(b)]. As a representative
of the near resonant case, Fig. 4 shows the combined and
individual spectra for the same parameters as in Fig. 2,
but with 8w=0.015. Incidentally, the data of Fig. 4 can
be used to obtain the spectrum E, for any other values of
the parameters ¥V, and dw, as long as these vary propor-
tionally. For example, if Vj— ¥V, /2 and 8w—8w/2, then
Eq. (18) gives E,—E, /2. Now notice, in contrast to the
resonant case, the lack of symmetry with respect to
E,=0. The spectrum (a) resembles that of the resonance
case but is shifted up in energy. For the first cell, n is
small, so n#dw» <<|V, , ;| and hence the spectrum, ac-
cording to Eq. (18), is mainly determined by the off-
diagonal terms |V, , ;,|. However, spectrum (c) in Fig. 4
is nearly equidistant over most of its range and differs
qualitatively from the corresponding spectrum (c) of Fig.
2. For this cell, n is large enough so that
#dwn >>|V,, , +|. Then to zero order approximation we
can neglect the off-diagonal terms ¥V, , 1, and the system
(18) becomes essentially unperturbed with a constant lev-
el separation #8w, QE functions 47=§6,,, and Landau
level functions Wy =exp(—iE,t/#)¥,(x) [see (14) and
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FIG. 4. QE spectrum and matrix elements for the near reso-
nance case 8w=0.015. The values of V', and h are the same as
in Figs. 2 and 3.

(15)]. Note however, that there is a clustering of levels in
spectrum (c) of Fig. 4. This clustering is, as in the reso-
nant case, a manifestation of the resonance of its classical
counterpart. Note that the clustering is not around
E,=0, which corresponds to the classical Hamiltonian
(2) not being equal to zero at the separatrix.

We shall now discuss the evolution of initial states in
the exact resonant case. Numerical experiments have al-
lowed us to distinguish two types of evolution. Figure 5
shows snapshots of the evolution of the initial state, a
Landau state C, =5,,,,,0, located near the boundary be-

tween the fourth and fifth Hilbert cell. The initial state is
marked by an arrow on the n axes. The argument of the
Bessel function, 1/ 2n oh, is close to its fourth zero. For
this figure, h=0.7, ny=126. After a few cyclotron
periods ( ~3) a wave packet is formed. Figure 5(a) shows
the wave packet at a later time ¢t =107, (T, is the cyclo-
tron period) traveling towards the left boundary of the
cell. Then, at subsequent times, the probability distribu-
tion |C, |? spreads throughout the whole cell and at time
t =20T, it collects itself at the left boundary [see Fig.
5(b)]. At time t =427, most of the distribution has re-
turned to the initial position. After some periods of these
types of oscillations of the distribution, a dominant peak
is formed near each of boundaries of the fourth cell. As
the amplitude of one grows, the other one decreases in a
periodic fashion. The frequency of these oscillations cor-
responds to the smallest distances between QE levels. To
see this behavior we can expand the 8 function of the ini-
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FIG. 5. Temporal evolution of the distribution |C,|? as a
function of n. Case 8&w=0. The initial Landau state, marked by

an arrow, is located near the boundary of the cell. V,=S5,
h=0.7.
tial state in terms of the QE functions,

8y = 2 Ay Ad - 1)

q
So the evolution of this state will be given by
—i(E, t/)
e (22)

C\()=3 Al Afe
q

The coefficients A4 ,‘,’0 in the expansion (21) depend upon

the position n; of the initial state in a given cell. When
ng is near the boundary the main contribution in (21)
comes from QE functions about the middle of the spec-
trum. This claim is based on the observation that only
QE functions associated with QE levels near E, =0 have
dominant amplitudes (see Fig. 3). We also observe that
all Landau levels oscillate at about the same frequency.

If the initial state is located somewhere in the middle
of the cell, then it spreads much faster than in the previ-
ous case without forming any localized distribution. Fig-
ure 6 shows the distribution |C,|? at two different times
for an initial state (Landau state) located near the middle
of the fourth Hilbert cell. We observe two generic
features (i) the initial distribution quickly (much faster
than in the previous case) spreads throughout the cell,
and (ii) the frequencies of oscillations of |C,|? are
markedly different for different n. The oscillations are
faster in the middle than to the neighborhood of the Hil-
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FIG. 6. Temporal evolution of the distribution |C,|? as a
function of n. Case 8w =0. The initial Landau state, marked by
an arrow, is located in the neighborhood of the center of the
cell. V=5, h=0.7. The times are (a) t =17, and (b) t =3T,.

bert cell boundaries. We can understand this behavior
with the help of the expansion (21). When the initial
state 8, ,, is located at about the middle of the cell, its ex-

pansion in QE states (21) contains QE states belonging to
the whole range of the spectrum (see Fig. 3). Thus there
is a wide range of frequencies in the evolution of the
probability distribution |C, |2.

The two distinct types of quantum motion just de-
scribed make the classical-quantum corresponding of our
system clearer. That is, an initial quantum state with a
sharp n, corresponds to a definite classical value of the
action I,. For an n, near a Hilbert cell boundary, I, is
close to the corresponding zero of the Bessel function
J;(I), i.e., close to the separatrix. Consider a set of classi-
cal orbits, all with same initial I but with different initial
6. Each one of these will execute slow-frequency motion
and with nearly the same frequency. The corresponding
quantum motion is similarly characterized; namely, (i) all
components |C,|? oscillate slowly with about the same
frequency, and (ii) the distribution |C,|? shifts from one
end to another of the Hilbert cell more or less periodical-
ly. In contrast, a set of classical orbits all with the same
value at I, around the middle of the classical case but
with different value of initial 8, will execute oscillatory
motion with as many different frequencies as there are in-
itially different 6’s. This behavior is manifested quantum
mechanically by the absence of any periodic motion and
by the wide range of frequencies of oscillations of the am-
plitude |C,, |2.

As a final remark concerning the temporal evolution of
an initial quantum distribution, we note that numerical
experiments show that tunneling to neighboring cells in-
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creases as the effective Planck’s constant increases. This
tunneling implies the transition from one cyclotron orbit
to another. This interesting phenomenon deserves fur-
ther investigation. The quantum-classical correspon-
dence of our system can be extended to the near resonant
case. Classically (see [8]) cyclotron resonance is
suppressed in the cell where the inequality
8w |Vy[dJ,(I)/dI]| is satisfied. This implies that the
action of any trajectory is approximately constant, so
quantum mechanically one expects that any initial state
located in the corresponding Hilbert cell will also remain
in the neighborhood of the initial position. Our numeri-
cal experiments have confirmed this conjecture.

The above considerations allows us to make some pre-
dictions about experimental observation of acoustic quan-
tum nonlinear resonance when an ultrasound wave prop-
agates perpendicularly to the a magnetic field in pure
metals (or semimetals). Two main conditions must be
satisfied for the observation of this phenomenon: (i) the
electron relaxation time 7 must be larger than the typical
time of spreading of initial Landau state driven by the
monochromatic acoustic wave. A rough estimate gives
>>& " '; (i) the argument of the Bessel function kr must
be large enough (i.e., larger than the first zero of the
Bessel function of order 1) to form one or more Hilbert
cells.

Both conditions can be satisfied by the following exper-
imental parameters: Sound frequencies of the order of 10
GHz (see, e.g., [15]), 72 107° sec, and sound intensity of
the order at 10 W/cm?. When these conditions are met
one can observe some interesting effects, such as the at-
tenuation of de Hass—van Alfen oscillations,
Shubnikov-de Hass and quantum-Hall-effect oscillations
in semiconductor heterostructures. All of these phenom-
ena are connected with the change in the number of the
filled Landau levels (with a variation of the applied mag-
netic field). In accordance with the results of this paper,
when nonlinear cyclotron resonance takes place the sharp
boundary between filled and unfilled states disappears. In
other words, the electron wave function in the presence
of the sound wave becomes a superposition of the several
Landau states, belonging to one cell. Spreading of the
wave function causes all of the oscillation phenomena to
wash out. We remark that the absence of the sharp
boundary between the filled and unfilled Landau states is
the reason for the decrease of the sound damping
coefficient under the condition of nonlinear acoustic cy-
clotron resonance, in comparison with the linear regime.
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